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Active rheology of phospholipid vesicles
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Optical tweezers are used to manipulate the shape of artificial dioleoyl-phosphatidylcholine (DOPC)
phospholipid vesicles of around 30 μm diameter. Using a time-shared trapping system, a complex of traps
drives oscillations of the vesicle equator, with a sinusoidal time dependence and over a range of spatial and
temporal frequencies. The mechanical response of the vesicle membrane as a function of the frequency and
wavelength of the driving oscillation is monitored. A simple model of the vesicles as spherical elastic membranes
immersed in a Newtonian fluid, driven by a harmonic trapping potential, describes the experimental data. The
bending modulus of the membrane is recovered. The method has potential for future investigation of nonthermally
driven systems, where comparison of active and passive rheology can help to distinguish nonthermal forces from
equilibrium fluctuations.
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I. INTRODUCTION

The equilibrium thermal fluctuations, called flickering,
of phospholipid vesicle and erythrocyte membranes have
been extremely well studied, both experimentally [1,2] and
theoretically [3–5]. The dynamic aspects of these fluctuations
are less well understood, owing to the large number of ways
in which membrane fluctuations relax [6] and the fact that
both microscopic observation [7] and scattering experiments
[8] typically cannot probe the relaxation of pure dynamic
eigenmodes. There has also been much recent interest in
active or athermal membrane systems, particularly as applied
to biology. Experiments have been performed on both model
[9] and in vitro cellular [10] membrane systems to probe
nonthermal membrane fluctuations, by looking at differences
between the static and dynamic fluctuation spectra and the
flickering predicted by the fluctuation dissipation theorem.
In this paper, we describe experiments we have performed
using optical tweezers to drive oscillations of giant vesicles,
observing the membrane response and fitting this to a simple
viscoelastic theory. The eventual aim is to apply this method
of active membrane driving to simple biological systems, such
as red blood cells, or to more complex model membranes
containing protein pumps, where the active deformation should
allow one to isolate thermal motion from nonthermal, active
motion, in a similar spirit as was demonstrated on bulk systems
in [11] and on living cells in [12].

II. METHODS

A. Production of giant unilamellar vesicles

Giant unilamellar vesicles (GUVs) are produced using the
electroformation method first described by Angelova et al.
[13]. Dioleoyl-phosphatidylcholine (DOPC) (Avanti Polar
Lipids, Alabama), 3 mg/ml in chloroform, is deposited on the
conducting side of an indium tin oxide (ITO) slide (VisionTek)
and the lipid film is dried overnight under vacuum. A capacitive
cell is formed with a second ITO slide with 0.5-mm-thick
Teflon strips acting as spacers. The chamber is filled with
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a sugar solution (100 mM sucrose, 2 mM sodium azide;
Sigma Aldrich) and the ends sealed with vacuum grease and
Parafilm. A 1 V peak to peak (p-p), 10 Hz sinusoidal signal
is applied across the electroformation chamber for 2 h, then
1 V p-p, 2 Hz for 50 min. This produces GUVs, which are
extracted and stored for up to two weeks at room temperature
in the original sucrose solution. This protocol is based on an
optimized method described in [14].

B. Imaging and manipulation of GUVs

Shortly before experiments are to be performed, GUVs in
sucrose solution are resuspended in isotonic glucose solution
at 50× dilution. Optical adhesive (no. 61, Norland, New
Jersey) is used to form a chamber of 125 μm thickness,
between a cover slip and a microscope slide. 50 μl of GUV
sample is injected using a micropipettor. After an evaporation
period, described below, the ends of the chamber are sealed
by optical adhesive and the adhesive cured under uv light.
The refractive index difference between sucrose and glucose
solutions allows the GUVs to be imaged easily under bright
field illumination, and the density contrast causes the vesicles
to settle at the base of the sample chamber, as described in [15].
Once the GUVs settle, the drift of their center of mass is
neglible. GUVs are imaged at room temperature (22 ◦C) in
a temperature controlled laboratory. They are found to have
diameters between 10 and 80 μm, with the majority between
15 and 40 μm.

In order to give the best image quality, the focal plane
is generally positioned 1–2 μm above the GUV equator,
since on the equator itself the radial intensity profile across
the contour varies around the equator, interfering with the
flickering analysis described in Sec. III. Theoretical analysis
(Sec. IV) assumes the GUV is imaged at its equator; in practice
the focal plane offset is small compared to the GUV radius and
is expected to have a neglible effect on the observed behavior.

Most GUVs are initially tense, or fluctuate only slightly.
When an optical trap is applied to such GUVs, the thermal
fluctuation amplitude drops dramatically, and they become
too tense to be driven by oscillations of the trap. To solve
this problem, the sample chamber is left unsealed for 90 min
before use. Approximately 1/3 of the external glucose solution
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evaporates, water moves out of the GUVs through osmotic
pressure, and the GUVs acquire enough excess area to be
deformed in the optical trap.

GUVs are illuminated in bright field with a halogen lamp
and observed with an AVT Marlin F-131B complementary
metal-oxide semiconductor camera, through a water immer-
sion objective (Zeiss, Achroplan IR 63×, numerical aperture
(NA) 0.9). The pixel size on screen is 93 nm, the recording
frame rate is between 70 and 100 frames per second (fps)
depending on GUV size, and the shutter time is ∼4ms.

C. Driving modes

The optical tweezers setup consists of a laser (IPG
Photonics, PYL-1-1064-LP, λ = 1064 nm, Pmax = 1.1 W)
focused through the same objective as used for observation.
The laser beam can be moved laterally in the focal plane
via a pair of acousto-optic deflectors (AA Opto-Electronic,
model AA.DTS.XY-250 at 1064 nm), controlled by custom
built electronics allowing multiple trap generation with sub-
nanometer resolution in the position of each trap, and switching
between traps in a time of 50 μs. This permits the creation of
complex time-shared traps consisting of up to 200 individual
time-varying trap locations, as described in [16].

Optical forces have been used before to deform GUVs
[17,18], and biological membranes [19]. Here, a complex of
traps is defined, consisting of a ring of 24 uniformly spaced
laser beams, leading to 24 discrete trapping positions that
hold and deform GUV membranes. The focused optical traps
produces a force on the membrane because of the asymmetry
of the refractive index between the internal and external sugar
solutions, as discussed in the Appendix. The total time for
the laser to visit all 24 trap positions is of the order of 1 ms.
This is much faster than the typical membrane relaxation time
scales of ∼0.1–1 s, so that it is reasonable to approximate all
the trap positions as being active continuously. Meanwhile, the
shape of the complex trap is changed in 100 discrete steps per
period, so again the time scale of these steps is much shorter
than experimental time scales. However, it was initially found
that the vesicle would drift out of the ring of traps during the
experiment. It was deduced that this instability was caused by
beating between the two short time scales: the laser switching
time and the increment in trap shape. The instability vanished
when the trap was moved diametrically between opposite
points on the vesicle equator rather than progressively round
the circle (Fig. 1). This star-shaped pattern was adopted for all
experiments reported in this paper. Note that the work reported
in Ref. [18] is close in spirit to the current investigation but the
experiment is limited to the stress relaxation following vesicle
extension.

The vesicle is first trapped in a static circular trap and
allowed to equilibrate for ∼10 s and then driven by periodically
changing the shape of the trap, with driving frequency ν.
During each run of the experiment, which lasts approximately
7 min, the driving frequency is scanned over a range from
0.049 to 12.6 Hz, up and down in steps of factors of 2 (see
Fig. 2). The amount of time and the number of periods spent
on each frequency step was varied throughout the experiment,
but was typically 4 periods per frequency, or 1 s, whichever
was longer. No systematic difference in response was found

FIG. 1. (Color online) Bright field optical image shows a vesicle
held in a ring of optical traps. The dots indicate the positions of
24 optical traps around the vesicle equator. In this image the traps
define a circle; in the experiment traps are moved at a range of spatial
and temporal frequencies. The arrows show the first few steps of the
protocol for time sharing of the beam between trap positions. Scale
bar is 5 μm.

between the parts of the experimental cycle where frequency
was increasing or decreasing. In each video the complete cycle
over ν is repeated two or three times. The evolution of the shape
of the complex trap over time can be described as follows,
ignoring the two short time steps. We give each trap a label i,
running from 1 to 24 in a clockwise direction. For a particular
frequency ν, the distance ri of the trap i from the origin at the
vesicle center, as a function of equatorial angle φi and time t ,
evolves as

ri(φi,t) = r0 + ζ0 cos(mφi) sin(ωt), (1)

where r0 is the initial radius of the complex trap, which is
chosen to be 1–2 μm smaller than the vesicle radius a. ζ0 is
the driving amplitude, typically 1 μm. The vesicle response to
varying amplitude (from 0.25 to 2 μm) at fixed frequency was
investigated separately, to test the linearity of the response.
ω = 2πν is the angular frequency of the driving oscillation,
and m is an integer mode number. Mode numbers of m = 2,

3, 4, and 6 are used. m = 5 is not used, in order that all modes
have their maximum and minimum amplitudes at the position
of a trap. Higher modes than m = 6 are not used, to avoid
approaching the spatial Nyquist frequency at m = 12.

III. DATA ANALYSIS

Each frame is analyzed using a custom contour analysis
programme in MATLAB (The Mathworks, Eugene, Oregon) to
determine the radius of the vesicle equator r as a function of φ

and t , as described in [7]. For each frame in the video, the center
of the vesicle is first determined approximately. The contour
is then split up into 360 equal angular segments. A radial
intensity profile is extracted perpendicular to each angular
segment. These radial profiles are combined by aligning their
points of maximal gradient to create an average radial profile.
Then each radial profile is correlated with the average profile. A
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FIG. 2. (Color online) The vesicle can be deformed by moving
optical traps. The panels show the membrane amplitude response
traces for the second harmonic mode in one experiment, where
the second harmonic mode itself is excited. (a) The full frequency
scan in one experiment; the vertical dashed lines indicate the times
at which the driving frequency is changed. (b) A closeup on the
yellow (shaded) region in (a), to illustrate the higher frequencies. The
sinusoidal response can be seen at both high and low frequencies, and
the amplitude decreases with frequency. The amplitude and phase of
the response, for various modes, are shown in Fig. 3.

parabola is fitted around the maximum in this filtered function.
This gives a subpixel determination of the radial profile of
each point, resulting in 360 equally spaced radial positions for
each frame: the contour profiles. These contour profiles are
spatially Fourier transformed, and the response of the excited
spatial mode extracted. A typical response is shown in Fig. 2.

The amplitude of each spatial mode is found to have a ran-
dom error of ±10–30 nm, depending on image quality. This is
comparable to the position resolution found in [20], where the
same optical setup was used to track colloidal microspheres.
The video is split up into sections, each corresponding to one
temporal input frequency, and the temporal Fourier transform
of each section is taken to give the phase and amplitude of the
response at that excitation frequency. The driving oscillations
of the complex trap are recorded separately, so that the relative
phase of excitation and response can be determined to within
one frame (∼10 ms). The mean and the standard deviation in
the mean of the response are taken from between four and six
cycles over all frequencies in a single video.

IV. THEORY

A. Dynamics of Helfrich Hamiltonian

The relaxation time scales of thermal fluctuations on a
spherical membrane have been derived in [3] and used to
describe erythrocyte flicker in [10]. We extend this theory
to sinusoidally driven oscillations. The Helfrich Hamiltonian
F for an arbitrarily shaped membrane is given by

F =
∫

S

dS
[
2κ

(
H 2 − 2C0H + C2

0

) + σ
] − P

∫
V

dV, (2)

where κ is the bending modulus coupling to the mean
curvature H , and terms in the Gaussian curvature κG have been
ignored, as these are topological invariants. The two Lagrange
multipliers σ and P maintain respectively a constant total
area S and volume V to second order in small fluctuations
around the equilibrium shape. σ is the effective tension, and
P is the pressure difference across the membrane. C0 is the
spontaneous curvature. In [3] Eq. (2) is expanded to second
order around a background sphere of radius a, to give

�F (2) =
∑
lm

Ulm
2

2a2
(l − 1)(l + 2)[a2σ + l(l + 1)κ], (3)

where Ulm is the displacement, decomposed into the spherical
harmonics Ym

l , which are the eigenmodes of the Helfrich
Hamiltonian on a spherical membrane. The spherical harmon-
ics are defined as in [21] and normalized such that∫ 2π

0

∫ π

0
Ym

l

[
Ym

l

]∗
sin θdθdφ = 1. (4)

In Eq. (3), we have neglected the spontaneous curvature, which
is expected to vanish for a symmetrical membrane. While it
is known that asymmetric internal and external solutions can
also produce spontaneous curvature [22], we assume here that
this effect is negligible since any direct interactions of the
phospholipids with sucrose and glucose are likely to be very
similar and so to cancel out. In general, a nonzero spontaneous
curvature will have a significant effect on mode amplitudes, in
that it modifies the equilibrium shape of the vesicle, as in [23],
and hence the eigenmodes and eigenvalues of the equations
of motion. However, the spontaneous curvature should have
no direct effect on the stiffness of modes. This can be seen
by making the replacement �H = H − C0 in Eq. (2). While
the equilibrium curvature is modified, the effective bending
stiffness is not.

Applying the equipartition function to Eq. (3) and pro-
jecting onto the equator as in [2] gives the mean squared
displacement of each equatorial mode:

〈|hm|2〉
a2

=
∑

l

b2
lmkBT

(l − 1)(l + 2)[a2σ + l(l + 1)κ]
, (5)

where blm = Ym
l (π

2 ,0), are the values of the spherical harmon-
ics on the equator, and hm is the Fourier transform of h(φ), the
equatorial vesicle radius. For large l (equivalent to large q),
Eq. (5) approaches the planar approximation used in [2,7] and
other papers.

The equation of motion for each eigenmode is

flm = −4π

[
aU̇lmηZ(l) + ∂�F

∂Ulm

]
, (6)
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where flm is the force acting on mode Ym
l and where

Z(l) = (2l + 3)(l − 1)

l
+ (2l − 1)(l + 2)

l + 1
. (7)

This is derived from the solution of Stokes equation in spher-
ical harmonics in [24] and agrees with Peterson’s calculations
[Eq. (60) in [4]], neglecting membrane viscosity. However,
Milner and Safran’s calculation of Z(l) differs from ours at
low l [3], possibly due to differences in boundary conditions.
By replacing flm with a random thermal force, and using the
fluctuation dissipation theorem, one obtains the dynamics of
thermal fluctuations, as in [3]. Consideration of the projection
onto the vesicle equator gives an expression for the time
correlation of equatorial fluctuations:

〈hm(t)h∗
m(t + τ )〉t =

∑
l

b2
lm〈|Ulm|2〉 exp

(−τ

τlm

)
, (8)

where

τlm = a3ηZ(l)

(l − 1)(l + 2)[a2σ + l(l + 1)κ]
. (9)

This is the equivalent of the planar approximation Eq. (8) in [7]
for spherical harmonics.

In the current work, the driving force for membrane motion
is provided not by thermal fluctuations but by interactions
between the membrane and a ring of optical traps. Here, we
model the discrete ring of traps by a continuous ring whose
displacement ζm(φ) from the mean radius r0 is specified by the
continuous approximation of Eq. (1):

ζm(φ) = ζ0 cos(mφ) sin(ωt). (10)

This continuous approximation is valid as long as the wave-
length of the equatorial mode under consideration is longer
than the intertrap spacing. The wavelength of the shortest
mode studied (m = 6) is four times longer than the intertrap
spacing. The force which the trap exerts on the membrane is
derived by approximating each point in the complex trap as a
Hookean spring, acting radially on the nearest equatorial point
of the vesicle membrane. The validity of this approximation is
addressed in the Appendix. The visible response h(φ,t) of the
membrane equator is decomposed into equatorial and temporal
harmonics as h = hm(ω) cos(mφ)eiωt . Hence, the radial force
flm produced by this ring of Hookean traps is

flm = 2πβblm(ζm − hm), (11)

where ζ is the amplitude of the harmonic driving oscillation
and β is the effective trapping stiffness, having units of N m−1.
An order of magnitude estimate of β is presented in the
Appendix. We ignore thermal fluctuations because they are
at random phase compared with the applied oscillations.

We note that the thermal fluctuations can produce a small
renormalization of the bending modulus, to give an observed
bending modulus κR of the form

κR = κ −
(

kBT

4π

)
I ln

(
qmax

qmin

)
. (12)

There has been much disagreement about the value and sign
of the scaling constant I . Proposed values range from I = −1
in [5] to I = 3 in [25]. These differences stem from the use

of two different measures, the mean curvature [5,26] or the
normal displacement [25,27,28]. Monte Carlo simulations [29]
have recovered a softening effect, consistent with I > 0, but it
is not clear whether the simulations also suffer from the same
dilemma over choice of measure. To calculate an order of
magnitude estimate, we can take I = 3 and qmax/qmin = 1000
for definitiveness. This gives a maximum correction to κ

of ∼−2kBT . If, in the active experiments, as predicted for
passive thermal flickering, the renormalization of κ does not
depend on the time scale or wave number of the driving
oscillations, then it will not modify the form of the membrane
response. Furthermore, since the renormalization is caused
by the thermal fluctuations, and since these fluctuations are
present in both the active and passive experiments, we expect
that any renormalization will occur to roughly the same extent
in both cases, so that for the purposes of comparison the
renormalization can be ignored.

We model the trap as continuous. This is valid in the
spherical model, since, in the linear regime, there is no
coupling between modes of different m. Combining Eqs. (3)
and (11) and taking the Fourier transform gives

h0, m

ζ0
= β̃

∑
l b

2
lm[iω̃Z(l) + ςl]−1

1 + β̃
∑

l b
2
lm[iω̃Z(l) + ςl]−1

, (13)

where several dimensionless parameters are defined:

ςl = (l − 1)(l + 2)σ̃ + (l − 1)l(l + 1)(l + 2),

β̃ = βa2

2κ
, σ̃ = σa2

κ
, ω̃ = ωηa3

κ
.

It is useful to examine the limits of Eq. (13) at high and
low frequency. At low frequency, the response is dominated
by elastic contributions and reaches a plateau, set by a balance
between the driving force β and the elastic resistance from
κ and σ . At high frequencies, viscous damping becomes
significant, and the response approaches the asymptotic limit:

h0, m

ζ0
= iβ̃ ln (4ω̃m−3)

3πω̃
. (14)

The logarithmic scaling in the high frequency limit comes
from the l4 dependence of the elastic terms in κ . These have a
higher order l dependence than the competing viscous terms,
so the viscosity is not able to completely dominate to give a
pure l−1 decay. However, if the finite lateral extent of the trap
is taken into account, this will lead to an effective cutoff in the
summation over l at a mode lmax corresponding to the depth
of focus of the trap, modifying the asymptotic decay to ∼ω−1.
The same finite size effect is known to lead to modifications
in the power spectra P (ω) of membrane motion from P (ω) ∝
ω−5/3 to P (ω) ∝ ω−2, when this motion is coupled to finite
sized patches, for example, micrometer sized beads [30,31].

The dominant effect of the optical traps is not the dynamic
motion produced by deforming the shape of the complex trap,
but rather the static stretching produced by the traps in their
mean position r0. This produces two effects: an increase in
tension, which can be seen from the reduced fluctuations of
the vesicle when the trap is applied, and a change of shape.
Without the effect of the trap, the vesicle has large amounts of
excess area, so is far from spherical. When the trap is applied,
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a certain amount of excess area is stretched out by the trap,
and the mean radius of the vesicle typically increases by a
few micrometers, giving an equilibrium membrane shape in
the trap that is probably close to an oblate spheroid. The
strictly spherical model above does not apply to arbitrarily
shaped vesicles but the general principle remains similar, with
the precise definition of some of the terms (b,α,ς ) varying
depending on the vesicle shape. We also expect the same high
frequency behavior as in the spherical model, with a decay in
amplitude scaling as ln (ω)/ω, irrespective of the shape of the
vesicle.

V. RESULTS

A. Active driving

In Fig. 3, the amplitude and phase of response are shown
for a 30-μm-diameter vesicle. The solid lines are fits to
Eq. (13), giving both the phase and amplitude of the vesicle
response. The experimental response is transformed to give
the effective vesicle modulus h′

m = h0, m/(ζ0 − h0, m), which
has the advantage that its phase is independent of β. We fit the
phase of h′ for κ and σ and then fit the amplitude of h′ for
β, keeping other parameters fixed. This is found to be more
robust than trying to fit all variable parameters at once. Fitting
was performed using the fminsearch function in MATLAB. At
22 ◦C, the viscosities of 100 mM glucose and sucrose solutions
are both within 5% of the viscosity of pure water [32], so the
viscosity is set at the pure water value: η = 10−3 Pa s. Solid
curves are fits to theory for the parameters given in the figure
caption. The mean fitted value of κ over 18 videos of 8 vesicles
is κ = (21 ± 3)kBT .

There is generally good agreement between theoretical
predictions and the experimental data, for both the phase
and the amplitude of response, when σ and κ are allowed
to vary freely. At high frequencies, however, the experimental
amplitudes are consistently lower than theory predicts. There
are several possible reasons for this. First, as shown in Fig. 2,
when driven at high frequency, the trapping becomes unstable,
that is to say, there is a systematic drift of the driven mode away
from the undeformed position. This could be explained by the
fact that at high frequencies the membrane does not follow
the trap position closely. If the membrane in one part of the
equator falls out of the linear trapping regime, then the driving
is no longer stable. Another possible contribution comes from
the finite size effect of the trap, as discussed in Sec. IV. This
would lead to an ω−1 decay of the membrane response at high
frequencies, indicated by the black line in Fig. 3(a).

In addition, the responses of the different harmonic modes
as shown in Fig. 3 are not well described by a single trapping
constant β. In Fig. 4, the fitted trapping constant is plotted
as a function of the excited wave vector for eight vesicles. In
general, the trapping strength decreases with increasing mode
number. This is in line with the behavior of the predicted
trapping force in the Appendix.

The linearity of the traps was tested by scanning over
driving amplitudes, from 0.25 to 2 μm, at fixed frequency,
at 0.2 and 1.6 Hz. This resulted in the plots shown in Fig. 5,
which demonstrate that over the range of amplitudes studied,
there is no significant nonlinear contribution from the driving
amplitude.
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FIG. 3. (Color online) The vesicle response to applied optical
force. (a) Membrane response amplitude of the harmonic modes 2
(©), 3 (�), and 4 (�), when the respective modes are driven by
optical traps, at ζ = 1 μm, as a function of driving frequency. (b) The
phase of response of the second harmonic mode of the same vesicle,
corresponding to the second mode amplitude response above. The
phase of the response to driving with modes 3 and 4 was not included
because they overlap closely with the response of mode 2. The solid
curves are lines of best fit of the theoretical response using Eq. (13),
where first the parameters κ and σ are fitted to the phase (b) and
then β is determined from the amplitude. Fitting gives σ = 1.2 ×
10−8 N m−1, κ = 19kBT . The value of β varies with mode number as
shown in Fig. 4. The black solid line in (a) represents the asymptotic
ω−1 decay discussed in the text.

B. Flickering analysis

The thermal flickering of the vesicle can be monitored
simultaneously with the active deformation. The effect of the
driven oscillations on the flickering amplitudes can be clearly
seen: Driving a particular mode increases the observed mean
squared static fluctuation of that mode, as expected, typically
without any effect on nearby modes, as is evident in Fig. 6. In
the presence of a membrane tension, which is here caused by
the optical trapping of the vesicle, a measure of the bending
modulus κ requires access to particularly high mode numbers.
Unfortunately, the video quality was on the whole too low to
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FIG. 4. (Color online) The values of trapping constant β,
extracted by fitting experimental data for all vesicles considered in
this study. β is plotted versus the wave number q of the driving
oscillation. Colored connected markers correspond to data from a
single vesicle. The unconnected green markers represent vesicles for
which only one data point was obtained. Most vesicles show a decay
of β with increasing wave number. The dashed line is a theoretical
estimate of β obtained from Eq. (A12), for a 30-μm-diameter vesicle
and other parameters as specified in the Appendix.

reliably determine the high mode number parts of the contour,
with a sufficient precision for the accurate determination of κ .
While this needs to be kept in mind in future experiments, it is a
limit that is readily addressed by using a higher quality camera
and a higher NA objective. The driven modes themselves could
be accurately determined because they are all long wavelength
modes, and because they are at a known frequency.

In parallel with the current experiments, we examined
DOPC GUVs produced using the same protocol as in Sec. II,

Driving amplitude (µm)

R
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e 
am
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itu

de
 (

µ
m

)

FIG. 5. (Color online) The response is linear: data in this figure
are for mode 2, with varying driving amplitude, at a constant
frequency of 0.2 Hz. The error bars are the standard deviation in
the mean over multiple oscillations for a single vesicle. The order in
which the amplitudes were investigated was randomized. The solid
line is a line of best fit passing through the origin, demonstrating the
linearity of the response. Similar linearity was seen for driving at
1.6 Hz and at both frequencies with a second vesicle.

FIG. 6. The flickering spectrum for a vesicle, obtained while
driving the fourth harmonic mode. In spite of the driven oscillations
the static spectrum is largely unaffected, except for the fourth mode
itself (clearly visible here as the highest 〈h2

q〉 value). The solid line
is a fit to the planar static spectrum, giving κ = 14kBT . At low wave
vectors the fluctuation spectrum is dominated by tension, as apparent
from the weak wave vector dependence.

using traditional flickering methods, and the contour analysis
method discussed in [7], and obtained a mean bending modulus
of κ = (27.3 ± 3.2)kBT over a sample of 60 vesicles, which
is consistent with the value obtained from actively driving the
deformations.

C. Flickering dynamics

We also extract the time correlation function for the lowest
modes, up to m = 12: Fig. 7. As shown in [7] and in Sec.
IV the time correlation function should be an infinite sum
over exponentials, given by Eq. (9), rather than a single
exponential. This is because the nonequatorial modes of the
vesicle, which contribute to the observed equatorial spectrum
of fluctuations, also decay, and each of these modes has its own
time scale. At long times, the correlation function approaches
a single exponential decay corresponding to the lowest energy
equatorial mode. At short times, all modes contribute, and at
intermediate times there is a rapid crossover to the long time
behavior as these higher energy modes decay away.

However, it was found empirically that at short time
differences (t < 0.1 s), the time correlation functions in Fig.
7 were fitted better by a single exponential with an effective
time constant τ ′ than by the sum over many exponentials in
Eq. (9). This could be explained by the fact that the calculation
of the correlation function Eq. (9) depends strongly upon the
assumption that the vesicle is quasispherical. There will also
be perturbing effects on the dynamics from the proximity to
the cover slip. No attempt was made to fit the correlations at
longer times, since the nonexponential form of the long time
correlations varies widely between experimental videos and is
probably caused by the limitations in the contour fitting which
are described in Sec. V B.

We follow the same method of analysis as in [7]: a single
exponential is fitted to the theoretical correlation functions over
a wide range of material parameters, resulting in an effective
theoretical decay time scale τ ′. This effective time scale is
found to be well fitted by a simple power law of τ0 alone,
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FIG. 7. (Color online) At short times, equatorial modes decay
with a well defined time scale. The normalized correlation functions
Cq for modes 2–12 of the 30 μm vesicle in Fig. 3 are plotted here.
Markers correspond to mode numbers: 2 (©), 3 (�), 4 (�), 6 (�).
Other modes are represented by crosses. In these data, the fourth
mode is excited, and as expected it displays a much slower decay
compared to the other modes. Solid lines are fits of single exponentials
exp (−t/τ ′) to the first ten delay times, and results for τ ′ are plotted
in Fig. 8.

where τ0 is the theoretical long time decay constant corre-
sponding to the equatorial mode. The empirically determined
function τ ′ (applicable for η = 10−3 Pa s, 10−12 < σ < 10−7

N m−1, 2kBT < κ < 200kBT , 105 < q < 1.5 × 106 m−1,
0.01 < τ0 < 100 s) is τ ′ = 0.57τ 0.88

0 . This effective time scale
is determined for delay times of between one and eight
frames, where noise has not yet become significant; see Fig. 7.
Within the range defined above, the effective theoretical time
scale is within 20% of this empirical function. This apparent
power-law scaling between τ0 and τ ′ is not universal, and only
applies to the intermediate range of delay times where most of
the high q modes have decayed away, but where the decay has
not yet become entirely dominated by the longest relaxation
time.

We then fit a single exponential to the corresponding
experimental data and use the empirically determined relation
between τ ′ and τ0 to estimate the experimental decay time of
the longest mode. This approximate method should be strictly
valid only for a quasispherical vesicle. However, it should
still give a more accurate estimate than simply assuming that
the time correlation function corresponds to the decay of the
equatorial mode alone.

The results of this fitting are shown in Fig. 8 for several
videos recorded from a single vesicle. Between modes 5 and
12, the decay time scales are well fitted by a τ0 ∼ q−1 decay,
as would be expected for tension dominated fluctuations [see
Eq. (9)]. The vesicles which were driven showed a much longer
correlation time in the mode that was driven than in other
modes, as shown in Figs. 7 and 8.

VI. CONCLUSIONS

With a simple quasispherical model, we obtain a quantita-
tive prediction of the phase and amplitude of vesicle response
to driving with a ring of optical traps around the vesicle
equator. However, because of the relatively poor bright field
video quality, it was not possible to obtain a simultaneous
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FIG. 8. (Color online) Time scale of decay τ ′ for several videos
taken with the same vesicle. (©) driving mode 2; (�) driving mode
3; (�) driving mode 4; (+) vesicle in static trap; (×) vesicle without
trap. The mode corresponding to the driven mode has a long time
correlation; other modes are unaffected by the driving to within
uncertainty. The solid and dashed lines are respectively the q−1 and
q−3 limits discussed in the text. Coloured lines connect points, to
guide the eye.

estimate of the bending modulus from the thermal flickering.
Also, in the conditions studied here, the active method is not
superior to the thermal flickering in terms of sensitivity to the
bending modulus, since only long wavelength harmonic modes
are excited, and these are dominated by the effective tension.
Nevertheless, the mean value of κ = (21 ± 8)kBT obtained
from fitting the response to driving is consistent with typical
values of κ for DOPC vesicles in the literature [for example,
(23.1 ± 3.5)kBT in [33]], and with values of κ obtained from
thermal flickering studies in our laboratory. The power of
this active deformation approach will be to enable studies of
more complex systems, such as, for example, multicomponent
vesicles, vesicle membranes coupled to membrane proteins,
and red blood cells. By actively driving these systems over
a wide range of length and time scales, it should be possible
to characterize behavior which is not apparent from passive
observation of equilibrium thermal fluctuations.
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APPENDIX: TRAPPING FORCE

This appendix contains calculations of the force exerted
on the equator of a vesicle by a ring of optical traps. The
calculation assumes a spherical vesicle and a Gaussian beam
focused at the vesicle equator. The calculation uses an energy
density approach, rather than geometric optics, because it is
simpler to take account of a Gaussian beam in the energy
density approach. However, the energy density method is not
rigorously correct, because it does not take account of the
scattered radiation as geometric optics does. Nevertheless, the
energy density approach and geometric optics were found to
give similar solutions for the force on the equator, differing
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only in a prefactor of order unity. Thus, only the energy density
approach is included here.

The optical trap is approximated as a Gaussian beam,
traveling along the z axis and focused on the origin. The beam
has a time averaged mean squared electrical field 〈E2〉 given
in cylindrical polar coordinates (ρ,φ,z) by [34]

〈 E2(t,ρ,z)〉 = A2
0

1 + (
z
zd

)2 exp

⎡
⎣− 2ρ2

d2
(
1 + (

z
zd

)2)
⎤
⎦,

(A1)

where A0 is a constant. A0 can be related to the total beam
power P by using the definition of the power as an integral
over any surface A perpendicular to the light path [34]:

P = cε0

2π

∫
A

dA〈E2〉. (A2)

For simplicity we take A to be the focal plane, z = 0.
Performing the integral gives

A2
0 = 4P

cε0d2
, (A3)

and therefore

〈E2(t,ρ,z)〉 = P

cε0σρ(z)2
exp

[
− ρ2

2σρ(z)2

]
, (A4)

where

σρ =
√

d2
(
1 + (

z
zd

)2)
4

. (A5)

In a diffraction limited beam, the width of the beam in the
focal plane (d/2) is similar to the wavelength of light, so in
the current case d ∼ 2 μm.

Now, suppose the space to be separated into two volumes
V1 and V2 with relative permittivities ε1 and ε2. The energy
density difference W between the beams passing through V1

and V2 will be given by

W = ε0�ε〈E2〉
4

, (A6)

where �ε = ε2 − ε1 is the difference in relative permittivity
between the two volumes. Suppose a membrane of negligible
thickness separates the two volumes. The normal pressure p

of the optical field on this membrane is equal to the energy
density W at that point. For the case of the Gaussian beam
described above, p is given by

p = P�ε

4cσρ(z)2
exp

[
− ρ2

2σρ(z)2

]
. (A7)

For fluid volumes, the only stresses in the system will occur
on the membrane. In reality, the membrane also refracts the
trapping beam, producing stresses on the membrane away
from the equator, but these are not included in this order of
magnitude estimate.

The pressure field of more complex traps is a linear
supposition of the pressure field of the component pointlike
traps. In particular, for a continuous ring of optical traps in

the plane z = 0, with variable radius r(φ), the pressure field is
given by

p = P�ε

8πcσ 2
ρ

∫ 2π

0
dα

× exp

(
−ρ2 + r(α)2 − 2ρr(α) cos (α − φ)

2σ 2
ρ

)
, (A8)

where α is a dummy angle.
The spring constant of the complex traps used in the

current paper can be found approximately by setting r =
r0 + ζ sin (mφ) and z = 0, and taking the derivative of Eq.
(A8) with respect to ζ around ζ = 0. This gives

∂p

∂ζ
≈ −B

∫ 2π

0
dγ exp

(
4ρr0 cos (γ )

d2

)
× cos (mγ ) [r0 − ρ cos (γ )] , (A9)

where

B = P�ε sin (mφ)

πcd4
exp

(
−2

(
ρ2 + r2

0

)
d2

)
, (A10)

and where γ = α − φ is another dummy angle. The value of
β, the spring constant of the optical trap, can be found by
integrating the pressure over the vesicle and factoring out the
dependence on the trap position. For a small vertical focal
distance zd , β is given approximately by multiplying Eq. (A9)
by zd :

β = 2πapeqzd

sin (mφ)
, (A11)

which gives

β ≈ −8azdP�ε

cd4
exp

(
−2

(
a2 + r2

0

)
d2

)

×
∫ 2π

0
dγ exp

(
4ar0 cos (γ )

d2

)
cos (mγ ) [r0 − a cos (γ )] .

(A12)

Hence, the trapping constant β depends in a nontrivial way
on the mode number m which is excited. However, in the limit
of pointlike traps, the mode dependence vanishes, since d/

√
ra

approaches zero, and the integral in Eq. (A12) is dominated
by the Gaussian decay. If we also assume a ∼ r and define
δ = r − a, this gives

β ≈ −4
√

2πδzdP�ε

cd3
exp

(
−2

δ2

d2

)
, (A13)

where δ = r0 − a is the difference between the radius of the
trap and the membrane. In order to have a finite trapping
stiffness, δ and d must be of similar order, also implying
a ∼ r . This is also the case experimentally: typically the mean
trap radius traps lies approximately 1 μm inside the vesicle
equator. If r0 > a, then Eq. (A13) suggests that the force on
the membrane will lie in the opposite direction to the motion
of the traps. This is formally correct, but this situation is
unstable toward rigid translation of the membrane. In this limit,
Eq. (A13) can be used to give an order of magnitude estimate
of β. The refractive index of sugar solutions can be obtained
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from [35], which gives �ε ∼ 9 × 10−3 for an internal solution
of 100 mM sucrose and an external solution of 100 mM.
The total trapping power P is approximately 100 mW. The
small length scales d, δ, and zd are all of order 2 μm. For
a 30-μm-diameter vesicle, this gives β ∼ 2 × 10−6 N m−1,
which is similar to the experimentally determined values of

β shown in Fig. 4. It is hard to make more than an order of
magnitude estimate of β, since, according to Eq. (A13), β

should scale very strongly with the length scales δ and d. For
nonpointlike traps, with larger trapping width d, the trapping
will tend to decrease with increasing mode number m. This is
also demonstrated experimentally in Fig. 4.
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